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Abstract: On-line estimation of unmeasurable biological variables is important in fermentation 
processes, directly influencing the optimal control performance of the fermentation system as well as 
the quality and yield of the targeted product. In this study, a novel strategy for state estimation of 
fed-batch fermentation process is proposed. By combining a simple and reliable mechanistic dynamic 
model with the sample-based regressive measurement model, a state space model is developed. An 
improved algorithm, swarm energy conservation particle swarm optimization (SECPSO), is 
presented for the parameter identification in the mechanistic model, and the support vector machines 
(SVM) method is adopted to establish the nonlinear measurement model. The unscented Kalman 
filter (UKF) is designed for the state space model to reduce the disturbances of the noises in the 
fermentation process. The proposed on-line estimation method is demonstrated by the simulation 
experiments of a penicillin fed-batch fermentation process. 

1. Introduction 

A key problem in fermentation process control is how to monitor the process variables, such as 
biomass, substrate or product concentrations, in a reliable and cost effective manner. Fermentation 
processes are generically characterized as complex systems exhibiting non-linear and time-varying 
dynamics [1]. The optimal control for a fed-batch fermentation system presents a challenge to control 
engineers because it is difficult to on-line estimate the unmeasurable biological variables[2]. 

Although many efforts have been made in the development of new hardware sensors and chemical 
analyzers, commercial reliable and cost effective instruments for on-line measurement are very 
limited. Hence, some on-line estimation methods, which are based on the mechanistic models or 
data-driven models, have been proposed for fermentation processes [3]. 

The support vector machines (SVM) method, which has solid theoretical foundation rooted in 
statistical learning theory, is regarded as a state-of-the-art technique in the data-driven nonlinear 
modeling applications. It has been successfully introduced for the soft-sensor applications to estimate 
the key process variables in fed-batch fermentation processes [4]. 

The unscented Kalman filter (UKF) proposed by Julier and Uhlmann avoids the linearization in 
the EKF update formula by an unscented transformation (UT) and overcomes the drawbacks of the 
EKF. The performance of the UKF is better than that of the EKF in terms of robustness and speed of 
convergence [5]. 

In this paper, a state space model of a fermentation process is established, in which a simple and 
reliable mechanistic model is used to predict the nonlinear dynamic equations and the SVM 
regression is adopted as the measurement equations. The parameters in dynamic equations are 
identified by swarm energy conservation particle swarm optimization (SECPSO) algorithm. The key 
state variables are on-line estimated by UKF. The proposed method is applied to a simulated 
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penicillin fed-batch fermentation process. 

2. Method 

2.1 State Space Model of Fermentation Process.  
A fed-batch fermentation process is described in a state space model as follows: 

( ) ( ( ), ( )) ( )

( ) ( ( )) ( )

dx t f x t u t w t
dt

y t h x t v t

 = +

 = +

                                                  (1) 

Where x is the state vector, y is the measurement vector, w is the vector of process noise, assumed 
to be white Gaussian with zero mean and covariance Q, v is the vector of measurement noise, 
assumed to be white Gaussian with zero mean and covariance R, t is time, f and h are general 
functions that represent the process model and measurement model, respectively. 

For using more prior knowledge, all available measured variables should be chosen to construct 
the SVM models. Hence, the SVM method is adopted to supplement the nonlinear measurement 
equations. 

SVM( )y x=                                                                 (2) 

where SVM denotes the nonlinear formulation established using SVM model. 

2.2 Parameter Identification Using SECPSO.  
The particle swarm optimization (PSO) is an evolutionary computation technique developed by 

Kennedy and Eberhart based on the simulation of a simplified social model [6]. The best position in 
the searching history of the ith particle is represented as *

iX  and the best position of the particle 
among the population is represented as *X . For the standard PSO algorithm, in the (k+1)th iteration 
each particle updates its velocity and position according to the following equations: 

1 * * *
1 1 2()( ) ()( )k k k

i i i i iV V rand X X rand X Xω η η+ = + − + −                         (3) 

1 1k k k
i i iX X V+ += +                                                        (4) 

Where 1ω  is the inertia weight that determines how much a particle holds its current velocity in the 
next iteration, 1η  and 2η are learning factors that control the maximum step size, and rand() is an 
independent uniformly distributed random variable in the range [0, 1]. 

The fitness value J in the SECPSO algorithm is the root mean square error (RMSE) for the 
simplified mechanistic model values compared with the actual desired values. The fitness value J of 
the algorithm is calculated according to the following equation 

1
( ) ( )

N
T

i i i i
i

x x x x
J

N
=

− −
=
∑                                               (5) 

Where ix is the actual value, ix is the output of simplified model, and N is the number of samples. 
We attempt to make the failure experience of the worst particle useful. The worst position in the 

searching history of the ith particle is represented as iX   and the worst position of the particle among 
the population is represented as X  . In this way, the algorithm updates its velocity equation according 
to the best value and the worst value of individual and population. The particle can change its status 
with more information. The update of velocity vector equation with the worst particle is: 
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1 * * *
1 1 1 2 2()( ) ()( ) ()( ) ()( )k k k k k

i i i i i i i i iV V rand X X rand X X rand X X rand X Xω η µ η µ+ = + − − − + − − −aa  (6) 

Where 1µ and 2µ are impact factors, which are used to affect the worst value of individual and 
population in the updating of the velocity. Other parameters are the same as those in the standard 
PSO. 

The energy of the ith particle is represented as T
i i ig V V= . The energy of the swarm is described as 

1 1

m m
T

i i i
i i

G g V V
= =

= =∑ ∑                                                             (7) 

We set a swarming coefficient [0,1]τ ∈  in the SECPSO algorithm. The number of good particles 
is mτ ×  and that of bad particles is (1 ) mτ− × . The particles are arranged according to the fitness 
value J  by ascending order. The mτ ×  particles in the front of the sequence are the good sub-swarm 
and the rest of particles are the bad sub-swarm. The good particles update their velocity and position 
according to Eq.(4) and Eq.(6). After the update, the energy of good sub-swarm is represented as 

 
x

1
1

m
T

i i
i

G V V
τ

=

= ∑                                                              (8) 

The bad particles update their velocity according to Eq.(3) and their position according to the 
following equations 

1 1k k k
i i iX X Vδ+ += +                                                             (9) 

1
1 1 (1 )

T
i i

G GV V
m

δ
τ+ +

−
=

−
                                                           (10) 

where δ  is the penalty coefficient, representing the difference between the swarm energy G and 
the good sub-swarm energy 1G , which affects each bad particle uniformly. 

2.3 UKF Algorithm.  

Unlike the EKF, the UKF does not approximate the nonlinear process and measurement model. 
The UKF uses a minimal set of sample points to capture the true mean and covariance of the 
nonlinear process [7]. 

The following discrete-time state space model is considered, which is from the forward Euler 
discretization of Eq.(1) and with the same variable declarations. 

( 1) ( ( ), ( )) ( )
( ) ( ( )) ( )

x k f x k u k w k
y k h x k v k

+ = +
 = +                                              (11) 

A general framework for recursive estimation of states based on the UKF technique is presented as 
follows. 

Initialization: ( k = 0 ) 

0 0ˆ ( )x E x= , 0 0 0 0 0ˆ ˆ[( )( ) ]TP E x x x x= − −                                        (12) 

For { }1,2, ,τ ∈ ∞  
Step 1: Selection of sigma points. The n-dimensional variable 1kx −  with mean 1ˆkx − and covariance 

1kP −  is approximated by sigma points selected 
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                                   (13) 

Step 2: Prediction. Each point is instantiated through the process model to yield a set of 
transformed samples  

, 1 1, 1 ( , ),     0,1, , 2 ,i k ki k k f i nχ χ µ− −− = =                                            (14) 

The predicted mean and covariance are computed as 
2

( )
1 , 1

1

ˆ
n

m
ik k i k k

i
x W χ− −

=

=∑
                                                             (15) 

2
( )

1 , 1 1 , 1 1
0

ˆ ˆ[ ] [ ]
n

c T
ik k i k k k k i k k k k

i
P W x x Qcc − − − − −

=

= − × − +∑                                    (16) 

Step 3: Update. As the measurement equation is nonlinear, the measurement update is performed 
as  

, 1, 1 ( ),     0,1, , 2 ,i ki k ky h i nχ −− = =                                                       (17) 

2
( )
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=∑                                                              (18) 

2
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1
k k k kx y y yK P P −=                                                                    (21) 

1 1ˆ ˆ ˆ( )k kk k k kx x K y y− −= + −                                                           (22) 

1 k

T
k y ykk kP P KP K−= −                                                                 (23) 

Step 4: Repeat of Steps 1 to 3 for the next sample. In the UKF implementation, the following 
variable definitions are used 

( )
0
( ) 2

0
( ) ( )

/ ( ),                                  0,
/ ( ) (1 ),            0,

1/ (2( )),         1, , 2

m

c

m c
i i

W n i
W n i
W W n i n n

λ λ

λ λ α β

λ

 = + =


= + + − + =
 = = + = + 

                                 (24) 

Where β  is used to incorporate prior knowledge of the distribution of x . For Gaussian 
distributions, 2β = is the optimal [8]. 

Clearly, the implementation of the UKF is convenient, because it does not need to calculate the 
Jacobian matrices, while it is necessary in the EKF.That is the advantage of using UKF for the state 
space model with SVM measurement equations. 
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3. Case Study and Results 

3.1 Application in Fed-batch Penicillin Fermentation.  
The complicated fermentation model for penicillin production in a fed-batch fermentor is used as 

the simulator of the process. A state space model for the process is established using the proposed 
modeling method. The dynamic equations are as follows[9]: 

0 0

0

/ /

5[( )/( )]

max

max 2

( )

( 1)

/

e

l
loss

x x l
x

l

p p l
p x d p

l

ps s l
m x

x s p s l l

T T T T
loss l loss

s

s x s

s
p p

i s s p

dV F F
dt

dC C dVC
dt V dt

dC C dVC K C
dt V dt

dC FS C dVQ C
dt Y Y V V dt

F V e
C

K C C
C

K C C K

m

m

mm

l

mm

mm

− −

 = −

 = −

 = − −



= − + + + −

 = −


= +


=
+ +



                             (25) 

The measurement equations are 

0 0 ( , , , )
( , , , )

( , , , )

x s p l

c c x s p l

heat heat x s p l

l l

C SVM C C C V
C SVM C C C V
Q SVM C C C V
V V

=


=


=
 =

                                          (26) 

Where the measurement vector is 0[ , , , ]T
c heat ly C C Q V= .The values of the parameters obtained 

using the SECPSO algorithm for the penicillin state space model are listed in Table 1. 

Table 1.   Values of the parameters obtained using SECPSO 

Ki Ks Kp Kd λloss Yx/s Yp/s μmax μpmax Qm 
1.838x10-1

1 0.2027 0.485
5 

0.014
6 

0.000
1 

0.471
2 0.8318 0.1051 0.0017 0.0171 

3.2 Experiments and Results.  
We set 0κ = and 2β = . The constant α is sensitive to the filter results and its value can be decided 

by simulation results. The initial values of 0x̂  are set to [0.001, 14.7, 0.1, 102]T, which are close to the 
true initial values [0.1, 15, 0, 100]T. The initialization tuning parameters, the process noise covariance 
Q  and measurement noise covariance R  for the UKF are as follows: 

7 7 7 6
0 0 0 0 0ˆ ˆ[( )( ) ] ([10 ,10 ,10 ,10 ])TP E x x x x diag − − − −= − − =                             (27) 

7 7 7 6([10 ,10 ,10 ,10 ])Q diag − − − −=                                                 (28) 

3 4 6 6([10 ,10 ,10 ,10 ])R diag − − − −=                                                 (29) 
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The measurement equation is 

ly V=                                                                     (30) 

We set 1α =  and 6([10 ])R diag −=  for the state space model without the SVM equations. The part 
result of the on-line estimation using different state space model is shown in Fig.1.  

 
The RMSE values for the state variables of the state space model with and without SVM equations 

compared with the simulator true values are listed in Table 2. 

Table 2.  RMSE values for different state space models compared with the simulator true values 

Modeling formalism RMSE(Cx) RMSE( Cs) RMSE( Cp) RMSE( Vl) 
Without SVM equations 2.8180 6.9591 0.2072 0.1381 

With SVM equations 0.2308 0.0958 0.0413 0.1351 

4. Conclusions 
The proposed estimation method improves the accuracy of on-line estimation in a fed-batch 

fermentation process. The experiments, carried out using the data from the simulated penicillin 
fermentation, have validated the main characteristics of the proposed approach. The tracking and 
estimation performance of the UKF for the state space model with SVM measurement equations is 
compared with that using the mechanistic state model only. The results indicate that the proposed 
method is an effective approach to address the difficult on-line estimation of fed-batch fermentation 
processes. 
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Fig.1 Comparison of biomass concentration for  different models 
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